Hoogendoorn Quick-Start Training

Module 1 – Operation iSii

April 2016
UNINTERRUPTED FUNCTION

Supplementary to Hoogendoorn's Terms of Delivery, two additional items also apply to the iSii:

1. Do not install any other software on the iSii yourself which was not supplied by Hoogendoorn, unless such software has explicitly been declared by Hoogendoorn in writing as: "Suitable for iSii"

2. An iSii must be connected to a computer network (LAN, WAN, Internet etc.) by a specially trained professional IT supplier in strict compliance with the Hoogendoorn guidelines in this regard. These guidelines are available from the Hoogendoorn helpdesk. With respect to both items, Hoogendoorn accepts no liability whatsoever for any consequences of non-compliance with these points.

ADDITIONAL PROTECTION

Critical processes must be additionally monitored by users themselves and/or protected by provisions outside your computer.

1. Many critical processes are involved in horticultural greenhouse operations, such as irrigation, reducing peaks in gas and electricity consumption, CO2 supply, lighting etc. Monitoring critical processes apart from your computer can mean using devices which are not connected to the control computer or are independent from it, but also regularly undertaking personal (visual) checks. In addition, safety devices outside the computer should also be provided to prevent damage to installations due to inaccurate or unexpected computer control.

2. Hardware must be additionally protected against power surges and peaks. Hoogendoorn does not accept liability for damage caused by power surges and peaks.

PUBLICATIONS

Hoogendoorn has taken the utmost care in preparing the text of this publication and the contents of its software and help screens.

However, if you feel there are any inaccuracies in this publication or in the software, please advise Hoogendoorn accordingly. Nevertheless, Hoogendoorn is unable to accept any further liability other than the ones described in our Terms of Delivery mentioned above. The contents of this publication are subject to change without prior notification at any time.
Task 1. Personalise your user interface

1. Please watch the video “Customize My explorer

 https://youtu.be/b4tfXS-Q1Jg

2. Please watch the video “Create worksheets”

 https://youtu.be/4DEUa5wbud8

3. Create the folder “00 Meteo” just like the example below

4. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer

5. Create the worksheet “00 Meteo” just like the example

6. Drag and drop the definitions from your own explorer to the worksheet
Task 2. Personalise a setting list

1. Please watch the video “Customize a setting list”

 [URL](https://youtu.be/aozaMaztOX8)

2. Adapt the setting list like the example below

 ![Example Setting List](image)

3. At what temperature it will freeze? …… °C
4. What will happen with the ventilation control?
5. At what wind speed there is a storm? …… m/s
6. What will happen with the ventilation control?
Task 3. Create a new graph

1. Please watch the video “Create a graph”
 https://youtu.be/DVB4Zm6J6EI
2. Add a new graph to folder “00 Meteo”
3. Enter name “Meteo”
4. Drag and drop the graph to worksheet “00 Meteo”
5. Change the period between 11-06-2014 08:00:00 and 14-06-2014 08:00:00
6. Add the graph lines like the example below
7. Change the scale values for the left and right axis
8. Use Factor for the line “radiation sum: measurement”
9. Choose the right axis for the line “radiation: measurement”
10. Was it raining during this period?
11. When was the most sunniest day?
Task 4. Personalise your user interface

1. Create the folder “10 Climate” just like the example below
2. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer
3. Create the worksheet “10 Climate” just like the example
4. Drag and drop the definitions from your own explorer to the worksheet
Task 5. Adapt the unique powerful graphical setpoints (ViPs)

1. Please watch the video “Change a ViP setting”
 https://youtu.be/qroQ7QxKErl

2. Please watch the video “Add a period to a ViP”
 https://youtu.be/PltmDiL0prE

3. Please watch the video “Handy tips ViP setting”

4. Select and open the setpoints “heating temperature”, “ventilation temperature lee side” and “ventilation temperature wind side” together

5. Change the setpoints until you get the same picture as the example below
Task 6. Adapt the unique powerful graphical setpoints (ViPs)

1. How high is the computed heating temperature at the following points of time:
 a. 3AM °C
 b. 8AM °C
 c. 12AM °C

2. At what greenhouse temperature the vents at the lee side will open at 12PM?
 a. 19 °C
 b. 20 °C
 c. 21 °C
Task 7. Adapt the unique powerful graphical setpoints (ViPs)

1. Please watch the video “Set an influence in a ViP”
 https://youtu.be/besbvRk2RcQ
2. Open the setting “heating temperature"
3. Change the setpoint until you get the same picture as the example below

![Graphical Setpoint Example](image-url)

Task 8. Adapt the unique powerful graphical setpoints (ViPs)

How high is the computed heating temperature if the measured radiation is equal to:

a. 100 W/m² °C
b. 200 W/m² °C
c. 300 W/m² °C
d. 400 W/m² °C
e. 500 W/m² °C
f. 600 W/m² °C
Task 9. Personalise a survey

1. Please watch the video “Customize a survey”

 https://youtu.be/Cdz22VXtywY

2. Rename the survey “Climate measured actual” to “Climate actual”

3. Adapt the survey like the example below

![Survey Example](image)
Task 10. Create a new graph

1. Add a new graph to folder “10 Climate”
2. Enter name “Climate”
3. Drag and drop the graph to worksheet “10 Climate”
4. Change the period between 11-06-2014 08:00:00 and 14-06-2014 08:00:00
5. Add the graph lines like the example below
6. Change the scale values: minimum to 25, maximum to 35

![Graph Example](image.png)

7. What is the highest greenhouse temperature? ……. °C
8. What is the lowest heating temperature? ……. °C
9. What is the average greenhouse temperature? ……. °C
Task 11. Use a graph for more insight to the control

1. Add a graph line “circuit pipe: computed” to the graph
2. Use the right axis
3. Change the scale value of the right axis: minimum to 0, maximum to 60

![Graph Image]

Task 12. Use a graph for more insight to the control

1. The pipe temperature is computed when the greenhouse temperature is lower than:
 a. The computed heating temperature
 b. The computed ventilation temperature
2. Why is the computed pipe temperature not higher than 49 degrees?
 a. The pump capacity is too low
 b. The boiler cannot deliver more energy
 c. The computed pipe temperature is limited by a maximum
Task 13. Use a graph for more insight to the control

1. Add a graph line “curtain: position” to the graph
2. Use the right axis
3. Change the scale value of the right axis: minimum to 0, maximum to 100
4. Zoom in to Thursday June 12th
Task 14. Use a graph for more insight to the control

1. Which picture is right?
 a. Curtain is closed: curtain position = 100%
 b. Curtain is closed: curtain position = 0%

2. What is the cause of the temperature drop at 7AM?:
 a. The curtain was opened
 b. The boiler was off
 c. The vents were opened
Task 15. Personalise your user interface

1. Create the folder “11 Ventilation” just like the example below
2. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer
3. Create the worksheet “11 Ventilation” just like the example
4. Drag and drop the definitions from your own explorer to the worksheet

Task 16. Personalise a setting list

Adapt the setting list like the example below
Task 17. Adapt the unique powerful graphical setpoints (ViPs)

The “basic” setpoint for RH is like the example below

![RH Setpoint Example](image)

Task 18. Adapt the unique powerful graphical setpoints (ViPs)

The “basic” setpoint for HD is like the example below

![HD Setpoint Example](image)
Task 19. Adapt the unique powerful graphical setpoints (ViPs)

1. Select and open the setpoint “lee side vent position humidity”

2. Change the setpoint until you get the same picture as the example below

3. What is the “vent position humidity” when the measured RH is:
 a. 79 % ……%
 b. 80 % ……%
 c. 81 % ……%
 d. 82 % ……%
 e. 83 % ……%
 f. 84 % ……%
 g. 85 % ……%
 h. 86 % ……%
Task 20. Adapt the unique powerful graphical setpoints (ViPs)

1. Select and open the setpoint “lee side vent position humidity”

2. Change the setpoint until you get the same picture as the example below

3. What is the “vent position humidity” when the measured HD is:
 a. 4.2 g/m³%
 b. 4.0 g/m³%
 c. 3.8 g/m³%
 d. 3.6 g/m³%
 e. 3.4 g/m³%
 f. 3.2 g/m³%
 g. 3.0 g/m³%
 h. 2.8 g/m³%
Task 21. Humidity

1. What is the maximum humidity at 14 °C? ……. g/m³

2. What is the absolute humidity at 14 °C and RH at 80%? ……. g/m³

3. What is the humidity deficit in that situation? ……. g/m³
Task 22. Dehumidify

1. Outside conditions: 10 °C, 80% RH
 Inside condition: 14 °C, 90% RH
 Can we use the vents to dehumidify? Yes/No

2. Outside conditions: 10 °C, 100% RH
 Inside condition: 14 °C, 90% RH
 Can we use the vents to dehumidify? Yes/No

3. Outside conditions: 13 °C, 100% RH
 Inside condition: 14 °C, 90% RH
 Can we use the vents to dehumidify? Yes/No

Maximum Water Vapour Concentration

<table>
<thead>
<tr>
<th>Relative Humidity</th>
<th>100%</th>
<th>90%</th>
<th>85%</th>
<th>80%</th>
<th>75%</th>
<th>70%</th>
<th>65%</th>
<th>60%</th>
<th>55%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

in grams per m³ at 1000 mbar
Task 23. Humidity deficit

1. What is a "perfect" RH when the temperature is 15 °C? ……. %

2. What is a "perfect" HD when the temperature is 15 °C? ……. %

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>RH%</th>
<th>95</th>
<th>90</th>
<th>85</th>
<th>80</th>
<th>75</th>
<th>70</th>
<th>65</th>
<th>60</th>
<th>55</th>
<th>50</th>
<th>45</th>
<th>40</th>
<th>35</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td>0.8</td>
<td>1.3</td>
<td>1.9</td>
<td>2.6</td>
<td>3.2</td>
<td>3.9</td>
<td>4.5</td>
<td>5.2</td>
<td>5.8</td>
<td>6.5</td>
<td>7.1</td>
<td>7.7</td>
<td>8.4</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0.7</td>
<td>1.4</td>
<td>2.1</td>
<td>2.7</td>
<td>3.4</td>
<td>4.1</td>
<td>4.8</td>
<td>5.5</td>
<td>6.2</td>
<td>6.9</td>
<td>7.5</td>
<td>8.2</td>
<td>8.9</td>
<td>9.5</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.7</td>
<td>1.5</td>
<td>2.2</td>
<td>2.9</td>
<td>3.6</td>
<td>4.4</td>
<td>5.1</td>
<td>5.8</td>
<td>6.5</td>
<td>7.3</td>
<td>8</td>
<td>8.7</td>
<td>9.4</td>
<td>10.2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0.8</td>
<td>1.6</td>
<td>2.3</td>
<td>3.1</td>
<td>3.9</td>
<td>4.6</td>
<td>5.4</td>
<td>6.2</td>
<td>6.9</td>
<td>7.7</td>
<td>8.5</td>
<td>9.2</td>
<td>10</td>
<td>10.8</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0.8</td>
<td>1.6</td>
<td>2.4</td>
<td>3.3</td>
<td>4.1</td>
<td>4.9</td>
<td>5.7</td>
<td>6.5</td>
<td>7.3</td>
<td>8.2</td>
<td>9</td>
<td>9.8</td>
<td>10.6</td>
<td>11.4</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.9</td>
<td>1.7</td>
<td>2.6</td>
<td>3.5</td>
<td>4.3</td>
<td>5.2</td>
<td>6.1</td>
<td>6.9</td>
<td>7.8</td>
<td>8.7</td>
<td>9.5</td>
<td>10.4</td>
<td>11.2</td>
<td>12.1</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>0.9</td>
<td>1.8</td>
<td>2.8</td>
<td>3.7</td>
<td>4.6</td>
<td>5.5</td>
<td>6.4</td>
<td>7.4</td>
<td>8.3</td>
<td>9.2</td>
<td>10.1</td>
<td>11</td>
<td>12</td>
<td>12.9</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.9</td>
<td>3.9</td>
<td>4.9</td>
<td>5.9</td>
<td>6.8</td>
<td>7.8</td>
<td>8.8</td>
<td>9.8</td>
<td>10.7</td>
<td>11.7</td>
<td>12.7</td>
<td>13.7</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1</td>
<td>2.1</td>
<td>3.1</td>
<td>4.1</td>
<td>5.2</td>
<td>6.2</td>
<td>7.2</td>
<td>8.2</td>
<td>9.3</td>
<td>10.3</td>
<td>11.3</td>
<td>12.4</td>
<td>13.4</td>
<td>14.4</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1.1</td>
<td>2.2</td>
<td>3.3</td>
<td>4.4</td>
<td>5.5</td>
<td>6.5</td>
<td>7.6</td>
<td>8.7</td>
<td>9.8</td>
<td>10.9</td>
<td>12</td>
<td>13.1</td>
<td>14.2</td>
<td>15.3</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1.2</td>
<td>2.3</td>
<td>3.5</td>
<td>4.6</td>
<td>5.8</td>
<td>6.9</td>
<td>8.1</td>
<td>9.2</td>
<td>10.4</td>
<td>11.6</td>
<td>12.7</td>
<td>13.9</td>
<td>15</td>
<td>16.2</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1.2</td>
<td>2.4</td>
<td>3.7</td>
<td>4.9</td>
<td>6.1</td>
<td>7.3</td>
<td>8.5</td>
<td>9.8</td>
<td>11</td>
<td>12.2</td>
<td>13.4</td>
<td>14.6</td>
<td>15.9</td>
<td>17.1</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1.3</td>
<td>2.6</td>
<td>3.9</td>
<td>5.2</td>
<td>6.5</td>
<td>7.7</td>
<td>9</td>
<td>10.3</td>
<td>11.6</td>
<td>12.9</td>
<td>14.2</td>
<td>15.5</td>
<td>16.8</td>
<td>18.1</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1.4</td>
<td>2.7</td>
<td>4.1</td>
<td>5.5</td>
<td>6.8</td>
<td>8.2</td>
<td>9.6</td>
<td>10.9</td>
<td>12.3</td>
<td>13.7</td>
<td>15</td>
<td>16.4</td>
<td>17.7</td>
<td>19.1</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1.4</td>
<td>2.9</td>
<td>4.3</td>
<td>5.8</td>
<td>7.2</td>
<td>8.6</td>
<td>10.1</td>
<td>11.5</td>
<td>13</td>
<td>14.4</td>
<td>15.8</td>
<td>17.3</td>
<td>18.7</td>
<td>20.2</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1.5</td>
<td>3</td>
<td>4.6</td>
<td>6.1</td>
<td>7.6</td>
<td>9.1</td>
<td>10.6</td>
<td>12.2</td>
<td>13.7</td>
<td>15</td>
<td>16.4</td>
<td>17.7</td>
<td>19.3</td>
<td>20.9</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1.6</td>
<td>3.2</td>
<td>4.8</td>
<td>6.4</td>
<td>8</td>
<td>9.6</td>
<td>11.2</td>
<td>12.8</td>
<td>14.4</td>
<td>16.1</td>
<td>17.7</td>
<td>19.3</td>
<td>20.9</td>
<td>22.5</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>1.7</td>
<td>3.4</td>
<td>5.1</td>
<td>6.8</td>
<td>8.5</td>
<td>10.2</td>
<td>11.9</td>
<td>13.6</td>
<td>15.3</td>
<td>17</td>
<td>18.6</td>
<td>20.3</td>
<td>22</td>
<td>23.7</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>1.8</td>
<td>3.6</td>
<td>5.4</td>
<td>7.1</td>
<td>8.9</td>
<td>10.7</td>
<td>12.5</td>
<td>14.3</td>
<td>16.1</td>
<td>17.9</td>
<td>19.6</td>
<td>21.4</td>
<td>23.2</td>
<td>25</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1.9</td>
<td>3.8</td>
<td>5.7</td>
<td>7.5</td>
<td>9.4</td>
<td>11.3</td>
<td>13.2</td>
<td>15.1</td>
<td>17</td>
<td>18.9</td>
<td>20.7</td>
<td>22.6</td>
<td>24.5</td>
<td>26.4</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7.9</td>
<td>9.9</td>
<td>11.9</td>
<td>13.9</td>
<td>15.9</td>
<td>17.9</td>
<td>19.9</td>
<td>21.8</td>
<td>23.8</td>
<td>25.8</td>
<td>27.8</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>2.1</td>
<td>4.2</td>
<td>6.3</td>
<td>8.4</td>
<td>10.5</td>
<td>12.5</td>
<td>14.6</td>
<td>16.7</td>
<td>18.8</td>
<td>20.9</td>
<td>23</td>
<td>25.1</td>
<td>27.2</td>
<td>29.3</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>2.2</td>
<td>4.4</td>
<td>6.6</td>
<td>8.8</td>
<td>11</td>
<td>13.2</td>
<td>15.4</td>
<td>17.6</td>
<td>19.8</td>
<td>22</td>
<td>24.2</td>
<td>25.4</td>
<td>26.8</td>
<td>30.8</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>2.3</td>
<td>4.6</td>
<td>6.9</td>
<td>9.3</td>
<td>11.6</td>
<td>13.9</td>
<td>16.2</td>
<td>18.5</td>
<td>20.8</td>
<td>23.2</td>
<td>25.5</td>
<td>27.8</td>
<td>30.1</td>
<td>32.4</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>2.4</td>
<td>4.9</td>
<td>7.3</td>
<td>9.7</td>
<td>12.2</td>
<td>14.6</td>
<td>17</td>
<td>19.5</td>
<td>21.9</td>
<td>24.4</td>
<td>26.8</td>
<td>29.2</td>
<td>31.7</td>
<td>34.1</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>2.6</td>
<td>5.1</td>
<td>7.7</td>
<td>10.2</td>
<td>12.8</td>
<td>15.4</td>
<td>17.9</td>
<td>20.5</td>
<td>23</td>
<td>25.6</td>
<td>28.2</td>
<td>30.7</td>
<td>33.3</td>
<td>35.8</td>
</tr>
</tbody>
</table>
Task 24. Personalise your user interface

1. Create the folder “20 Irrigation” just like the example below

2. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer

3. Create the worksheet “20 Irrigation” just like the example below

4. Drag and drop the definitions from your own explorer to the worksheet
Task 25. Personalise a setting list

1. Adapt the setting list like the example below

```
<table>
<thead>
<tr>
<th>Settings</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase 3 supply amount VIP</td>
<td></td>
<td>80.0</td>
</tr>
<tr>
<td>EC control EC value VIP</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>pH control pH value</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>interval VIP</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>delay time VIP</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>type of start recipe</td>
<td></td>
<td>daily repeating</td>
</tr>
<tr>
<td>start: en stop conditions</td>
<td></td>
<td>Selection</td>
</tr>
<tr>
<td>time: start relative to</td>
<td></td>
<td>clock</td>
</tr>
<tr>
<td>time: stop relative to</td>
<td></td>
<td>clock</td>
</tr>
<tr>
<td>time: start time</td>
<td></td>
<td>08:00</td>
</tr>
<tr>
<td>time: stop time</td>
<td></td>
<td>16:00</td>
</tr>
<tr>
<td>radiation: start relative to</td>
<td></td>
<td>clock</td>
</tr>
<tr>
<td>radiation: start time</td>
<td></td>
<td>08:00</td>
</tr>
<tr>
<td>radiation: stop relative to</td>
<td></td>
<td>clock</td>
</tr>
<tr>
<td>radiation: stop time</td>
<td></td>
<td>16:00</td>
</tr>
<tr>
<td>radiation sum start VIP</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
```

2. What is the minimum time between 2 drip cycles? …… minutes

3. What is the maximum time between 2 drip cycles? …… minutes

4. At what radiation sum will a drip cycle start? …… J/cm²
Task 26. Adapt the unique powerful graphical setpoints (ViPs)

1. Select and open the setpoint “radiation sum start”

2. Change the setpoint until you get the same picture as the example below

3. What is the goal of the influence “wind speed” in this setpoint?

4. What is the “radiation sum start” when the measured wind speed is:
 a. 4 m/s J/cm²
 b. 5 m/s J/cm²
 c. 6 m/s J/cm²
 d. 7 m/s J/cm²
 e. 8 m/s J/cm²
 f. 9 m/s J/cm²
 g. 10 m/s J/cm²
 h. 11 m/s J/cm²
Task 27. Adapt the unique powerful graphical setpoints (ViPs)

1. Select and open the setpoint “EC control EC value”

2. Change the setpoint until you get the same picture as the example below

3. What is the goal of the influence “radiation” in this setpoint?

4. What is the “EC value” when the radiation measurement is:
 a. 190 W/m² EC
 b. 200 W/m² EC
 c. 300 W/m² EC
 d. 400 W/m² EC
 e. 410 W/m² EC
Task 28. Personalise a setting list

1. Adapt the setting list like the example below

2. The fertilizer tanks are nearly empty. How can you pause the current irrigation?
 ..
 ..

3. The pump is stopped during a running irrigation because of an EC alarm. What are you going to do now?
 ..
 ..
 ..
 ..