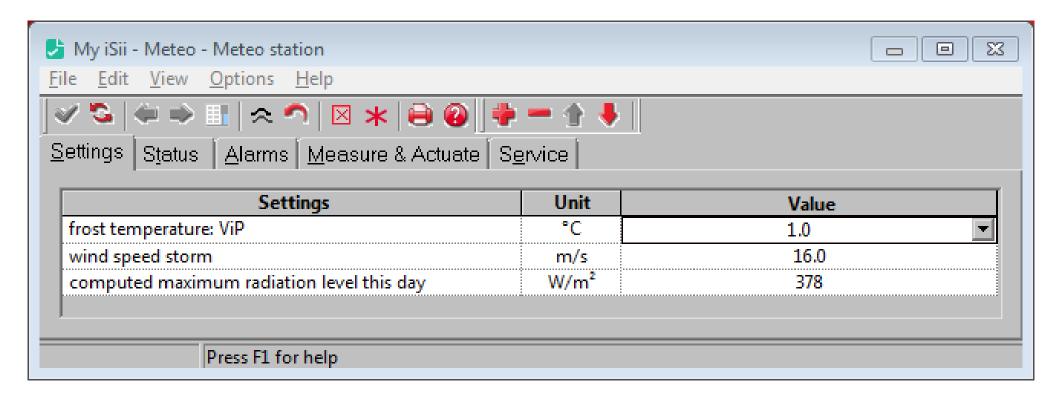
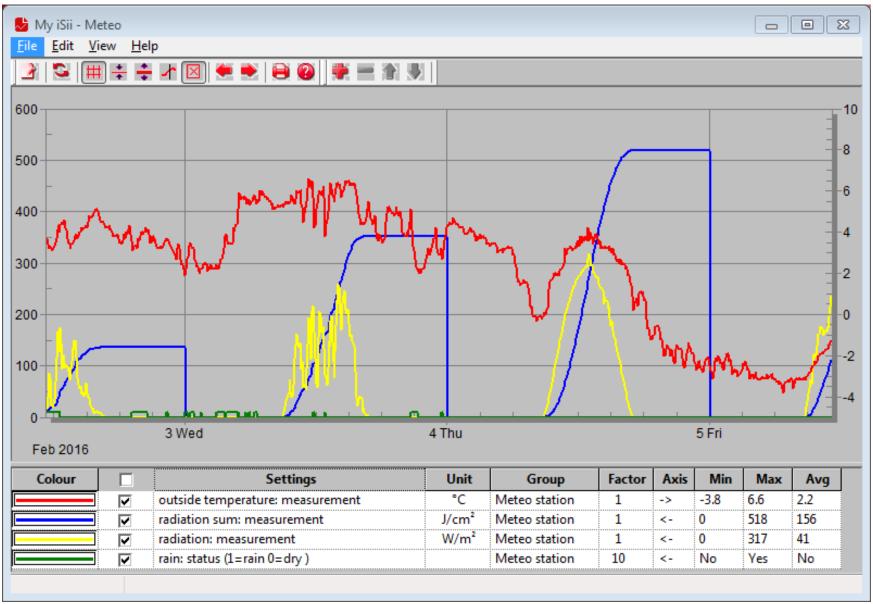


Hoogendoorn iSii Quick-Start Operation



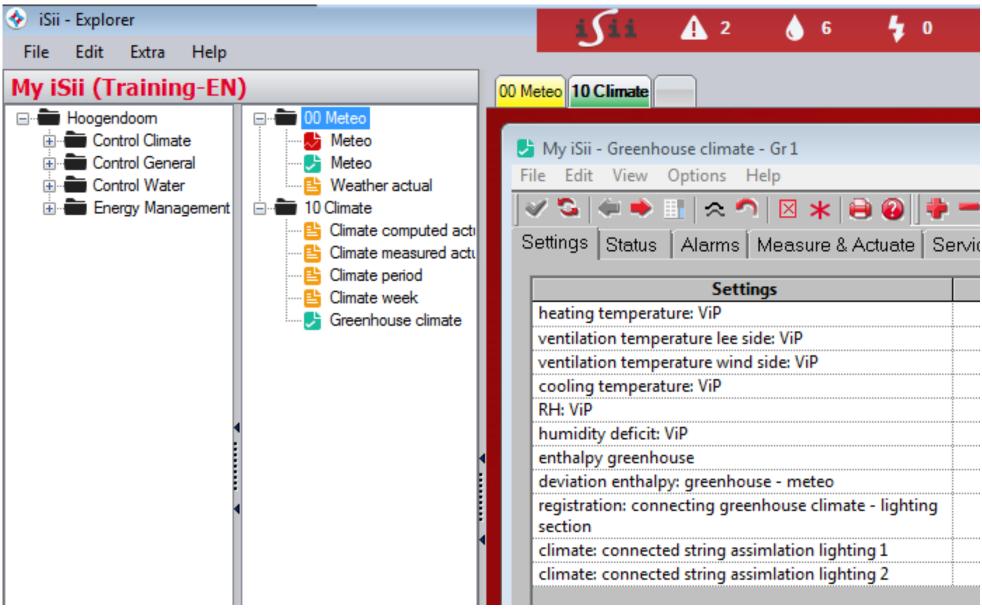
Task 1. Personalise your user interface

- 1. Please watch the video "Customize My explorer"
- 2. Please watch the video "Create worksheets"
- 3. Create the folder "00 Meteo" just like the example above
- 4. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer
- 5. Create the worksheet "00 Meteo" just like the example
- 6. Drag and drop the definitions from your own explorer to the worksheet



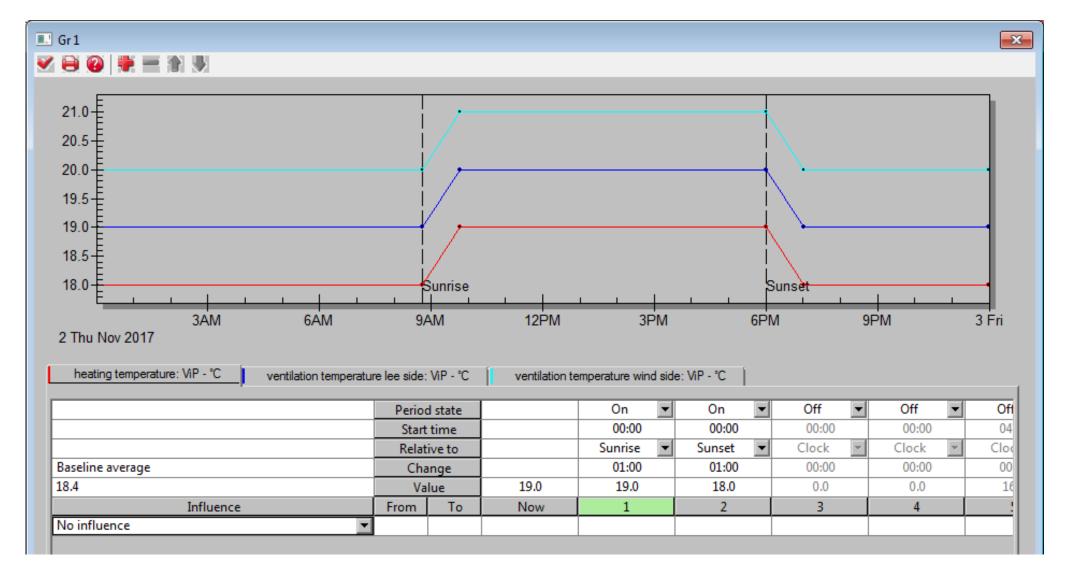
Task 2. Personalise a setting list

- 1. Please watch the video "Customize a setting list"
- 2. Adapt the setting list like the example above
- 3. At what temperature it will freeze? °C
- 4. What will happen with the ventilation control?
- 5. At what wind speed there is a storm? m/s
- 6. What will happen with the ventilation control?



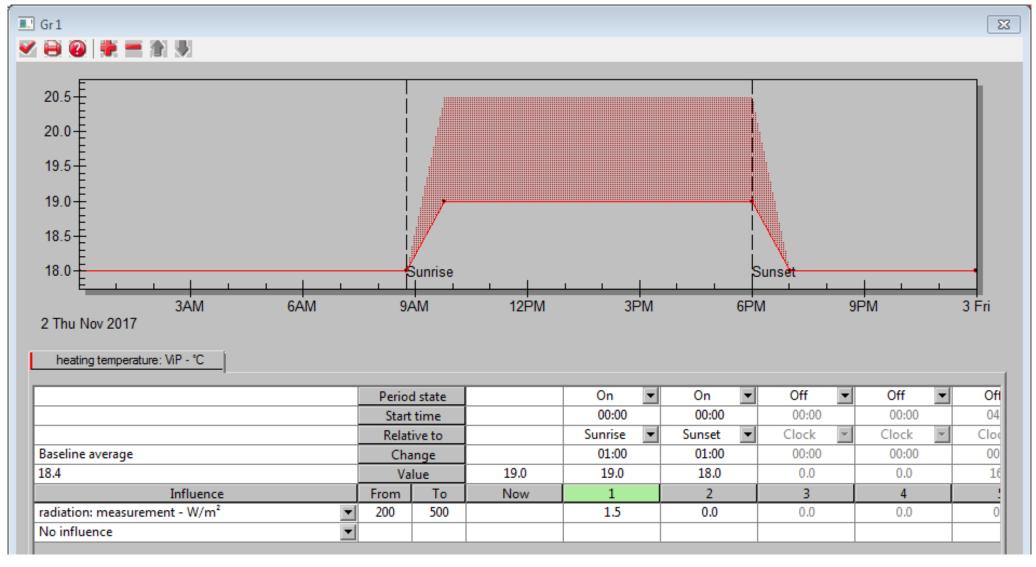
Task 3. Create a new graph

- 1. Please watch the video "Create a graph"
- 2. Add a new graph to folder "00 Meteo"
- 3. Enter name "Meteo"
- 4. Drag and drop the graph to worksheet "00 Meteo"
- 5. Change the period between 02-02-2016 00:00:00 and 05-02-2016 00:00:00
- 6. Add the graph lines like the example above
- 7. Change the scale values for the left and right axis
- 8. Choose the right axis for the line "outside temperature: measurement"
- 9. Use Factor for the line "rain: status (1=rain 0=dry)"
- 10. Was it raining during this period?
- 11. When was the most sunniest day?



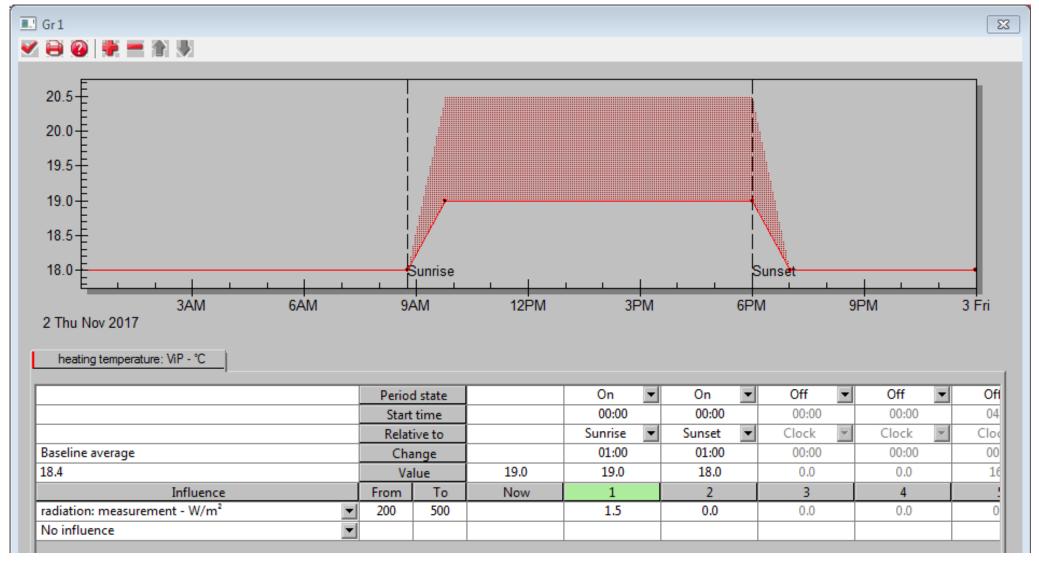
Task 4. Personalise your user interface

- 1. Create the folder "10 Climate" just like the example above
- 2. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer
- 3. Create the worksheet "10 Climate" just like the example
- 4. Drag and drop the definitions from your own explorer to the worksheet



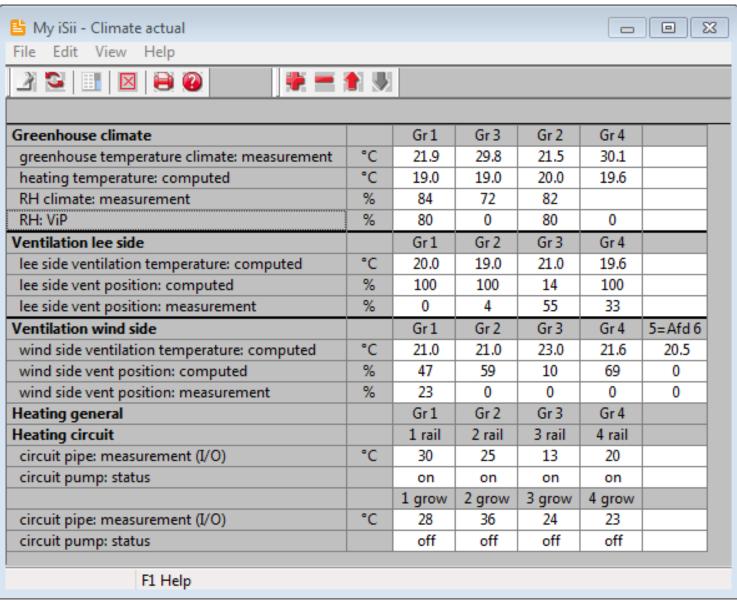
Task 5. Adapt the unique powerful graphical setpoints (ViPs)

1.	Please watch the video "Change a ViP setting"
2.	Please watch the video "Add a period to a ViP"
3.	Please watch the video "Handy tips ViP setting"
4.	Select and open the setpoints "heating temperature", "ventilation temperature lee side" and "ventilation temperature wind side" together
5.	Change the setpoints until you get the same picture as the example below
6.	How high is the computed heating temperature at the following points of time:
	a. 3 o'clock °C
	b. 12 o'clock °C
	c. 21 o'clock °C
7.	At what greenhouse temperature the vents at the lee side will open at 12 o'clock?
	a. 19 °C
	b. 20 °C
	c. 21 °C



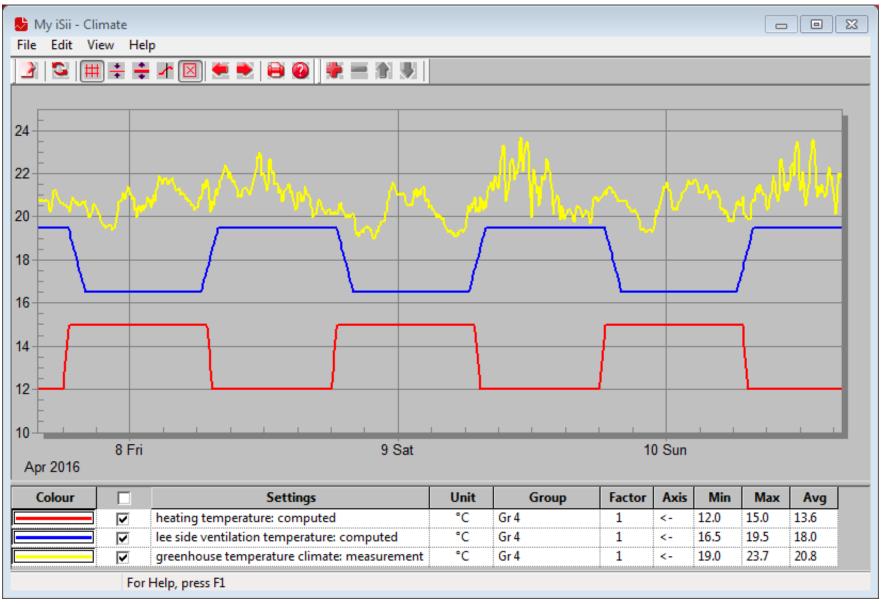
Task 6. Adapt the unique powerful graphical setpoints (ViPs)

- 1. Please watch the video "Set an influence in a ViP"
- 2. Open the setting "heating temperature"
- 3. Change the setpoint until you get the same picture as the example above



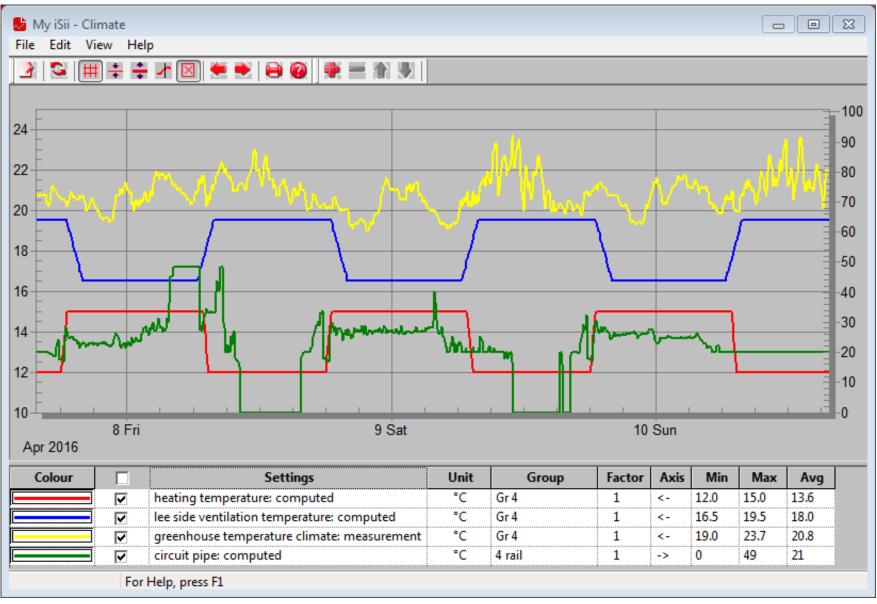
Task 7. Adapt the unique powerful graphical setpoints (ViPs)

- 1. How high is the computed heating temperature if the measured radiation is equal to:
 - a. 100 W/m2°C
 - b. 200 W/m2°C
 - c. 300 W/m2°C
 - d. 400 W/m2°C
 - e. 500 W/m2°C
 - f. 600 W/m2°C



Task 8. Personalise a survey

- 1. Please watch the video "Customize a survey"
- 2. Rename the survey "Climate measured actual" to "Climate actual"
- 3. Adapt the survey like the example above



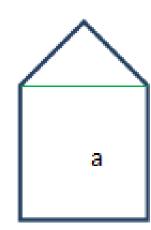
Task 9. Create a new graph

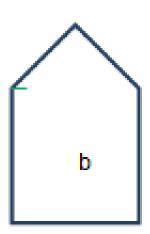
- 1. Add a new graph to folder "10 Climate"
- 2. Enter name "Climate"
- 3. Drag and drop the graph to worksheet "10 Climate"
- 4. Change the period between 07-04-2016 00:00:00 and 10-04-2016 00:00:00
- 5. Add the graph lines like the example above
- 6. Change the scale values: minimum to 10, maximum to 25
- 7. What is the highest greenhouse temperature? °C
- 8. What is the lowest heating temperature? °C
- 9. What is the avarage greenhouse temperature? °C

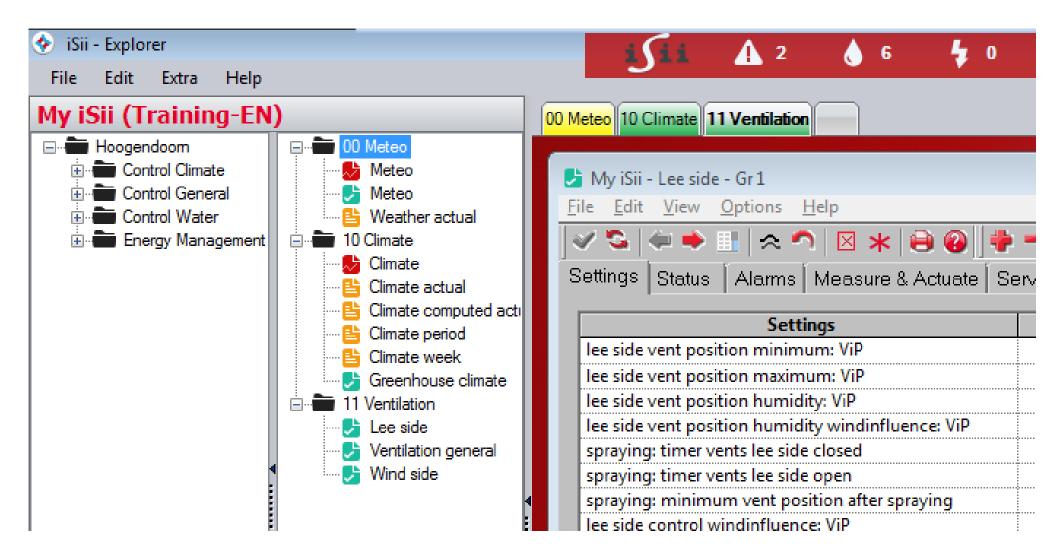


Task 10. Use a graph for more insight to the control

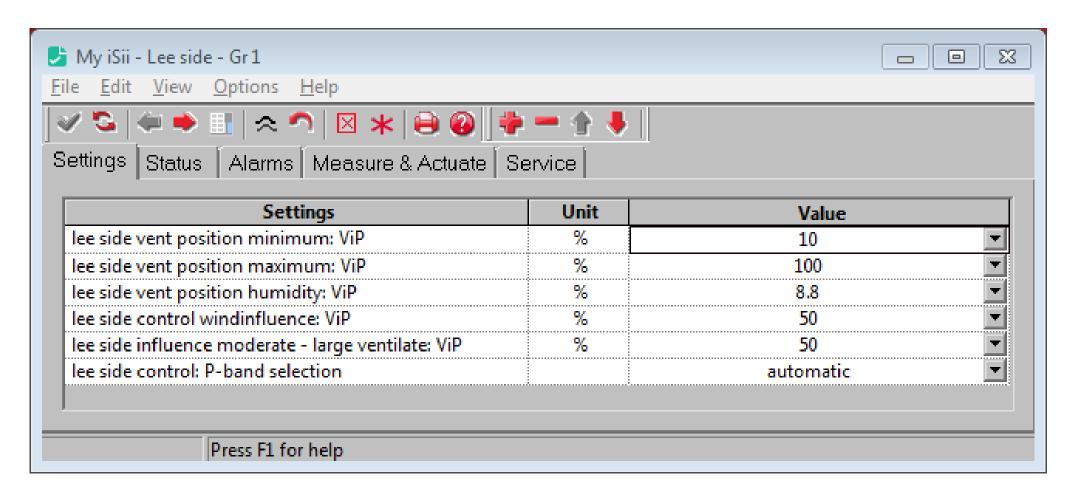
- 1. Add a graph line "circuit pipe: computed" to the graph
- 2. Use the right axis
- 3. Change the scale value of the right axis: minimum to 0, maximum to 101
- 4. The pipe temperature is computed:
 - a. when the greenhouse temperature is lower than the computed heating temperature
 - b. when the greenhouse temperature is lower than the computed ventilation temperature
 - c. based on the setpoint minimum pipe temperature
- 5. Why the measured pipe temperature is sometimes 0 degrees?
 - a. The pump is off
 - b. There is no heat demand in the greenhouse
 - c. The boiler is off





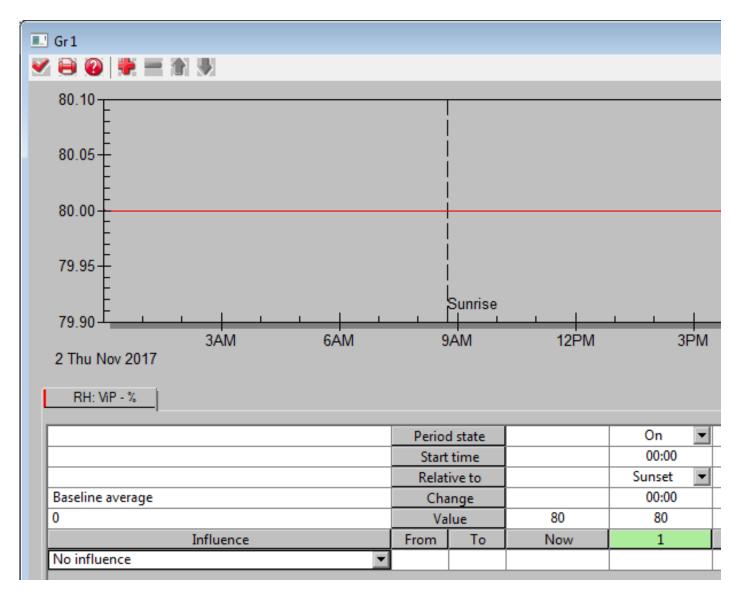

Task 11. Use a graph for more insight to the control

- 1. Add a graph line "curtain: position" to the graph
- 2. Use the right axis
- 3. Zoom in to Friday 8 April
- 4. Which picture is right?
 - a. Curtain is closed: curtain position = 100%
 - b. Curtain is closed: curtain position = 0%
- 5. Why the curtain is opened during the day?:
 - a. Greenhouse temperature is high enough
 - b. Outside temperature is high enough
 - c. Radiation is high enough



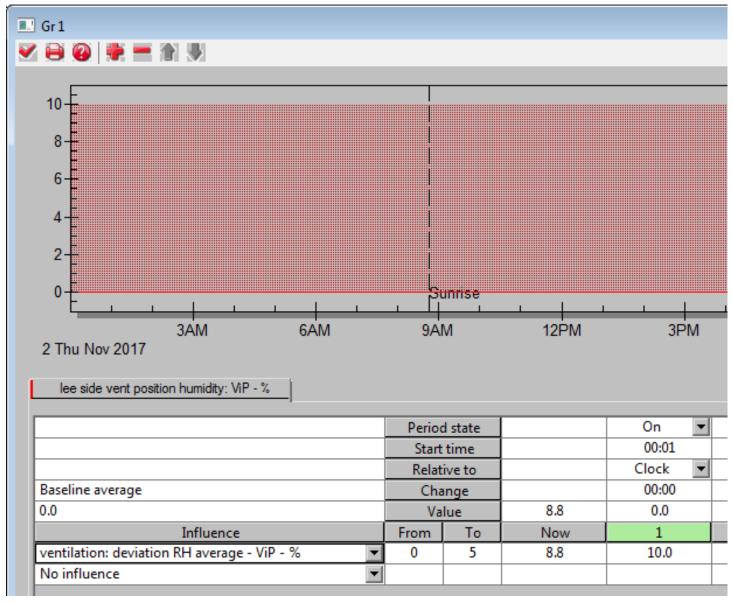
Task 12. Personalise your user interface

- 1. Create the folder "11 Ventilation" just like the example above
- 2. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer
- 3. Create the worksheet "11 Ventilation" just like the example above
- 4. Drag and drop the definitions from your own explorer to the worksheet



Task 13. Personalise your user interface

1. Adapt the setting list like the example above



Task 14. Adapt the unique powerful graphical setpoints (ViPs)

1. The "basic" setpoint for RH is like the example above

Task 15. Adapt the unique powerful graphical setpoints (ViPs)

- 1. Select and open the setpoint "lee side vent position humidity"
- 2. Change the setpoint until you get the same picture as the example above
- 3. What is the "vent position humidity" when the measured RH is:
 - a. 79 %%
 - b. 80 %%
 - c. 81 %%
 - d. 82 %%
 - e. 83 %%
 - f. 84 %%
 - g. 85 %%
 - h. 86 %%

Maximum Water Vapour Concentrationin grams per m³ at 1000 mbar

in grams per m ³ at 1000 mbar											
Relative Humidity											
Temp	100%									55%	50%
0	4.8	4.6	4.4	4.1	3.9	3.6	3.4	3.2	2.9	2.7	2.4
1	5.2	4.9	4.7	4.4	4.2	3.9	3.6	3.4	3.1	2.9	2.6
2	5.6	5.3	5.0	4.7	4.4	4.2	3.9	3.6	3.3	3.1	2.8
3	6.0	5.7	5.4	5.1	4.8	4.5	4.2	3.9	3.6	3.3	3.0
4	6.4	6.0	5.7	5.4	5.1	4.8	4.5	4.1	3.8	3.5	3.2
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•						V
5	6.8	6.5	6.1	5.8	5.4	5.1	4.8	4.4	4.1	3.7	3.4
6	7.3	6.9	6.5	6.2	5.8	5.5	5.1	4.7	4.4	4.0	3.6
7	7.8	7.4	7.0	6.6	6.2	5.8	5.4	5.0	4.7	4.3	3.9
8	8.3	7.9	7.5	7.0	6.6	6.2	5.8	5.4	5.0	4.6	4.1
9	8.8	8.4	7.9	7.5	7.1	6.6	6.2	5.7	5.3	4.9	4.4
	0.0	0.4	0.7	0.0	4.0	4.4					
10	9.4	8.9	8.5	8.0	7.5	7.1	6.6	6.1	5.6	5.2	4.7
11	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0
12	10.7	10.1	9.6	9.1	8.5	8.0	7.5	6.9	6.4	5.9	5.3
13	11.4	10.8	10.2	9.7	9.1	8.5	8.0	7.4	6.8	6.3	5.7
14	12.1	11.5	10.9	10.3	9.7	9.1	8.5	7.9	7.3	6.7	6.0
14	12.1	11.0	10.5	10.0	5.1	0.1	0.0	7.5	7.0	0.7	0.0
15	12.9	12.2	11.6	10.9	10.3	9.6	9.0	8.4	7.7	7.1	6.4
16	13.7	13.0	12.3	11.6	10.9	10.2	9.6	8.9	8.2	7.5	6.8
17	14.5	13.8	13.1	12.3	11.6	10.9	10.2	9.4	8.7	8.0	7.3
18	15.4	14.6	13.9	13.1	12.3	11.6	10.2	10.0	9.2	8.5	7.7
19	16.3	15.5	14.7	13.9	13.1	12.3	11.4	10.7	9.8	9.0	8.2
19	10.5	10.0	14.7	13.8	13.1	12.3	11.4	10.7	9.0	9.0	0.2
20	17.3	16.4	15.6	14.7	13.9	13.0	12.1	11.3	10.4	9.5	8.7
21	18.4	17.5	16.5	15.6	14.7	13.8	12.9	11.9	11.0	10.1	9.2
22	19.5	18.5	17.5	16.5	15.6	14.6	13.6	12.7	11.7	10.7	9.7
23	20.6	19.6	18.6	17.5	16.5	15.5	14.4	13.4	12.4	11.3	10.3
24	21.8	20.7	19.6	18.6	17.5	16.4	15.3	14.2	13.1	12.0	10.3
24	21.0	20.7	19.0	10.0	17.5	10.4	10.0	14.2	13.1	12.0	10.9
25	23.1	21.9	20.8	19.6	18.5	17.3	16.2	15.0	13.9	12.7	11.5
26	24.4	23.2	22.0	20.8	19.5	18.3	17.1	15.0	14.7	13.4	12.2
27	25.8	24.5	23.2	21.9	20.7	19.4	18.1	16.8	15.5	14.2	12.2
28	27.3	25.9	24.6	23.2	21.8	20.5	19.1	17.7	16.4	15.0	13.6
29	28.8	27.4	25.9	24.5	23.1	21.6	20.2	18.7	17.3	15.0	14.4
29	20.0	21.4	25.9	24.0	23.1	21.0	20.2	10.7	17.3	15.9	14.4
30	30.4	28.9	27.4	25.9	24.3	22.0	21.2	19.8	10.2	16.7	15.2
31	32.1	30.5			_	22.8	21.3		18.3		_
32	33.9	32.2	28.9 30.5	27.3 28.8	25.7 27.1	24.1 25.4	22.5	20.9	19.3	17.7	16.1
							23.7	22.0	20.3	18.6	16.9
33 34	35.7 37.7	33.9	32.2	30.4	28.6	26.8	25.0	23.2	21.4	19.6	17.9
34	3/./	38.8	33.9	32.0	30.1	28.2	26.4	24.5	22.6	20.7	18.8
25	20.7	27.7	25.7	22.7	24.7	20.0	27.0	25.0	22.0	24.0	10.0
35	39.7	37.7	35.7	33.7	31.7	29.8	27.8	25.8	23.8	21.8	19.8
36	41.8	39.7	37.6	35.5	33.4	31.3	29.3	27.2	25.1	23.0	20.9
37	44.0	41.8	39.6	37.4	35.2	33.0	30.8	28.8	26.4	24.2	22.0
38	46.3	44.0	41.7	39.4	37.0	34.7	32.4	30.1	27.8	25.5	23.2
39	48.7	46.3	43.8	41.4	39.0	36.5	34.1	31.7	29.2	26.8	24.4
	ı	I	I	ı	I	I	I	1	I	I	

Task 16. Humidity

- 1. What is the maximum humidity at 14 °C? g/m3
- 2. What is the absolute humidity at 14 °C and RH at 80%? g/m3
- 3. What is the humidity deficit in that situation? g/m3

Maximum Water Vapour Concentration in grams per m³ at 1000 mbar

in grams per m³ at 1000 mbar											
	Relative	Humidit									
Temp	100%	95%	90%	85%	80%	75%	70%	65%	60%	55%	50%
0	4.8	4.6	4.4	4.1	3.9	3.6	3.4	3.2	2.9	2.7	2.4
1	5.2	4.9	4.7	4.4	4.2	3.9	3.6	3.4	3.1	2.9	2.6
2	5.6	5.3	5.0	4.7	4.4	4.2	3.9	3.6	3.3	3.1	2.8
3	6.0	5.7	5.4	5.1	4.8	4.5	4.2	3.9	3.6	3.3	3.0
4	6.4	6.0	5.7	5.4	5.1	4.8	4.5	4.1	3.8	3.5	3.2
5	6.8	6.5	6.1	5.8	5.4	5.1	4.8	4.4	4.1	3.7	3.4
6	7.3	6.9	6.5	6.2	5.8	5.5	5.1	4.7	4.4	4.0	3.6
7	7.8	7.4	7.0	6.6	6.2	5.8	5.4	5.0	4.7	4.3	3.9
8	8.3	7.9	7.5	7.0	6.6	6.2	5.8	5.4	5.0	4.6	4.1
9	8.8	8.4	7.9	7.5	7.1	6.6	6.2	5.7	5.3	4.9	4.4
10	9.4	8.9	8.5	8.0	7.5	7.1	6.6	6.1	5.6	5.2	4.7
11	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0
12	10.7	10.1	9.6	9.1	8.5	8.0	7.5	6.9	6.4	5.9	5.3
13	11.4	10.8	10.2	9.7	9.1	8.5	8.0	7.4	6.8	6.3	5.7
14	12.1	11.5	10.9	10.3	9.7	9.1	8.5	7.9	7.3	6.7	6.0
			10.0								
15	12.9	12.2	11.6	10.9	10.3	9.6	9.0	8.4	7.7	7.1	6.4
16	13.7	13.0	12.3	11.6	10.9	10.2	9.6	8.9	8.2	7.5	6.8
17	14.5	13.8	13.1	12.3	11.6	10.9	10.2	9.4	8.7	8.0	7.3
18	15.4	14.6	13.9	13.1	12.3	11.6	10.8	10.0	9.2	8.5	7.7
19	16.3	15.5	14.7	13.9	13.1	12.3	11.4	10.7	9.8	9.0	8.2
	10.0	10.0		10.0	10.1	12.0		10.1	0.0	0.0	0.2
20	17.3	16.4	15.6	14.7	13.9	13.0	12.1	11.3	10.4	9.5	8.7
21	18.4	17.5	16.5	15.6	14.7	13.8	12.9	11.9	11.0	10.1	9.2
22	19.5	18.5	17.5	16.5	15.6	14.6	13.6	12.7	11.7	10.7	9.7
23	20.6	19.6	18.6	17.5	16.5	15.5	14.4	13.4	12.4	11.3	10.3
24	21.8	20.7	19.6	18.6	17.5	16.4	15.3	14.2	13.1	12.0	10.9
	21.0	20.7	10.0	10.0	11.0	10.1	10.0		10.1	12.0	10.0
25	23.1	21.9	20.8	19.6	18.5	17.3	16.2	15.0	13.9	12.7	11.5
26	24.4	23.2	22.0	20.8	19.5	18.3	17.1	15.9	14.7	13.4	12.2
27	25.8	24.5	23.2	21.9	20.7	19.4	18.1	16.8	15.5	14.2	12.9
28	27.3	25.9	24.6	23.2	21.8	20.5	19.1	17.7	16.4	15.0	13.6
29	28.8	27.4	25.9	24.5	23.1	21.6	20.2	18.7	17.3	15.9	14.4
20	20.0	21.7	20.0	24.0	20.1	21.0	20.2	10.7	17.0	10.0	17.7
30	30.4	28.9	27.4	25.9	24.3	22.8	21.3	19.8	18.3	16.7	15.2
31	32.1	30.5	28.9	27.3	25.7	24.1	22.5	20.9	19.3	17.7	16.1
32	33.9	32.2	30.5	28.8	27.1	25.4	23.7	22.0	20.3	18.6	16.9
33	35.7	33.9	32.2	30.4	28.6	26.8	25.0	23.2	21.4	19.6	17.9
34	37.7	38.8	33.9	32.0	30.1	28.2	26.4	24.5	22.6	20.7	18.8
34	31.1	30.0	33.8	32.0	30.1	20.2	20.4	24.0	22.0	20.1	10.0
35	39.7	37.7	35.7	33.7	31.7	29.8	27.8	25.8	23.8	21.8	19.8
36		39.7	37.6	35.5							
	41.8				33.4	31.3	29.3	27.2	25.1	23.0	20.9
37	44.0	41.8	39.6	37.4	35.2	33.0	30.8	28.8	26.4	24.2	22.0
38	46.3	44.0	41.7	39.4	37.0	34.7	32.4	30.1	27.8	25.5	23.2
39	48.7	46.3	43.8	41.4	39.0	36.5	34.1	31.7	29.2	26.8	24.4
	1		1	ı	ı	ı	ı	ı	ı	ı	ı

Task 17. Dehumidify

1. Outside conditions: 14 °C, 80% RH

Inside condition: 18 °C, 90% RH

Can we use the vents to dehumidify? Yes/No

2. Outside conditions: 14 °C, 100% RH

Inside condition: 18 °C, 90% RH

Can we use the vents to dehumidify? Yes/No

3. Outside conditions: 17 °C, 100% RH

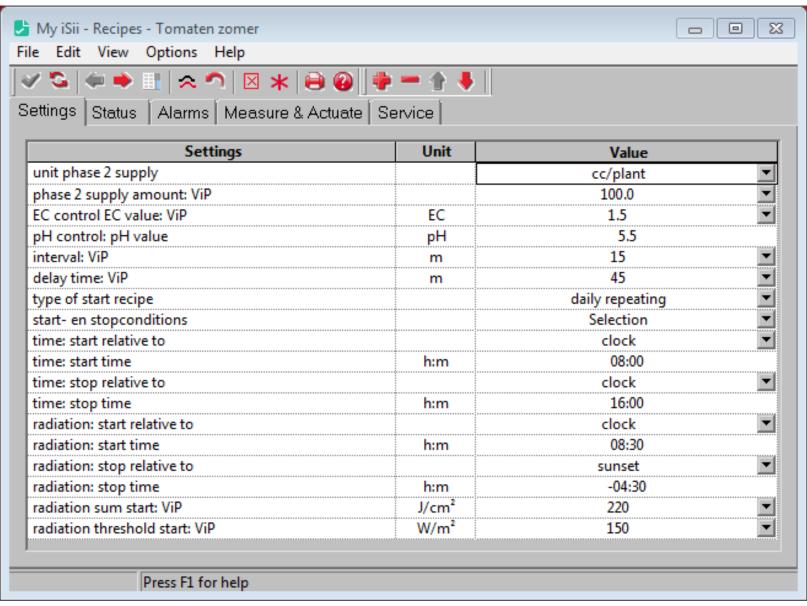
Inside condition: 18 °C, 90% RH

Can we use the vents to dehumidify? Yes/No

Humidity deficit table (grams of water per m³ air)														
RH%														
Temperature °C	95	90	85	80	75	70	65	60	55	50	45	40	35	30
15	0,6	1,3	1,9	2,6	3,2	3,9	4,5	5,2	5,8	6,5	7,1	7,7	8,4	9
16	0,7	1,4	2,1	2,7	3,4	4,1	4,8	5,5	6,2	6,9	7,5	8,2	8,9	9,6
17	0,7	1,5	2,2	2,9	3,6	4,4	5,1	5,8	6,5	7,3	8	8,7	9,4	10,2
18	0,8	1,5	2,3	3,1	3,9	4,6	5,4	6,2	6,9	7,7	8,5	9,2	10	10,8
19	0,8	1,6	2,4	3,3	4,1	4,9	5,7	6,5	7,3	8,2	9	9,8	10,6	11,4
20	0,9	1,7	2,6	3,5	4,3	5,2	6,1	6,9	7,8	8,7	9,5	10,4	11,2	12,1
21	0,9	1,8	2,8	3,7	4,6	5,5	6,4	7,4	8,3	9,2	10,1	11	12	12,9
22	1	2	2,9	3,9	4,9	5,9	6,8	7,8	8,8	9,8	10,7	11,7	12,7	13,7
23	1	2,1	3,1	4,1	5,2	6,2	7,2	8,2	9,3	10,3	11,3	12,4	13,4	14,4
24	1,1	2,2	3,3	4,4	5,5	6,5	7,6	8,7	9,8	10,9	12	13,1	14,2	15,3
25	1,2	2,3	3,5	4,6	5,8	6,9	8,1	9,2	10,4	11,6	12,7	13,9	15	16,2
26	1,2	2,4	3,7	4,9	6,1	7,3	8,5	9,8	11	12,2	13,4	14,6	15,9	17,1
27	1,3	2,6	3,9	5,2	6,5	7,7	9	10,3	11,6	12,9	14,2	15,5	16,8	18,1
28	1,4	2,7	4,1	5,5	6,8	8,2	9,6	10,9	12,3	13,7	15	16,4	17,7	19,1
29	1,4	2,9	4,3	5,8	7,2	8,6	10,1	11,5	13	14,4	15,8	17,3	18,7	20,2
30	1,5	3	4,6	6,1	7,6	9,1	10,6	12,2	13,7	15,2	16,7	18,2	19,8	21,3
31	1,6	3,2	4,8	6,4	8	9,6	11,2	12,8	14,4	16,1	17,7	19,3	20,9	22,5
32	1,7	3,4	5,1	6,8	8,5	10,2	11,9	13,6	15,3	17	18,6	20,3	22	23,7
33	1,8	3,6	5,4	7,1	8,9	10,7	12,5	14,3	16,1	17,9	19,6	21,4	23,2	25
34	1,9	3,8	5,7	7,5	9,4	11,3	13,2	15,1	17	18,9	20,7	22,6	24,5	26,4
35	2	4	6	7,9	9,9	11,9	13,9	15,9	17,9	19,9	21,8	23,8	25,8	27,8
36	2,1	4,2	6,3	8,4	10,5	12,5	14,6	16,7	18,8	20,9	23	25,1	27,2	29,3
37	2,2	4,4	6,6	8,8	11	13,2	15,4	17,6	19,8	22	24,2	26,4	28,6	30,8
38	2,3	4,6	6,9	9,3	11,6	13,9	16,2	18,5	20,8	23,2	25,5	27,8	30,1	32,4
39	2,4	4,9	7,3	9,7	12,2	14,6	17	19,5	21,9	24,4	26,8	29,2	31,7	34,1
40	2,6	5,1	7,7	10,2	12,8	15,4	17,9	20,5	23	25,6	28,2	30,7	33,3	35,8

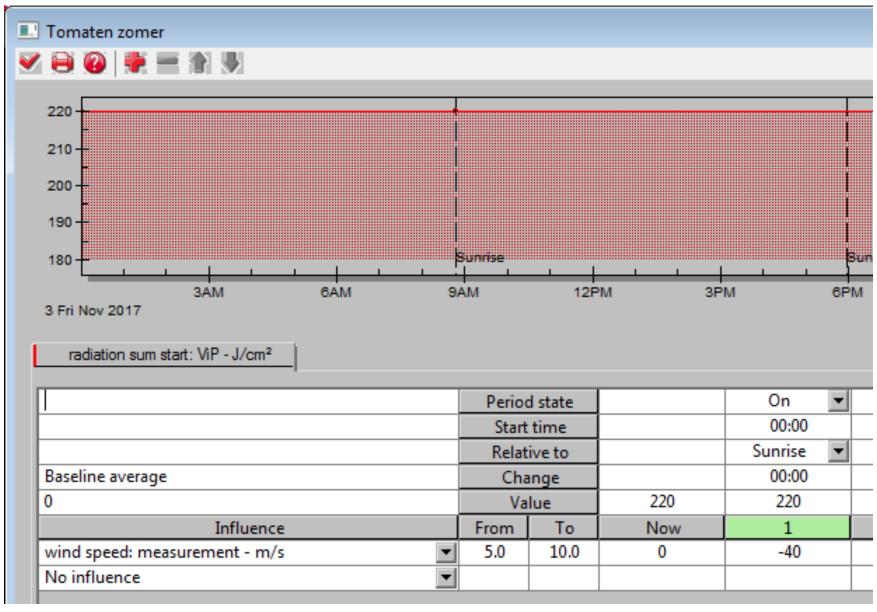
Task 18. Humidity deficit

- 1. What is a "perfect" RH when the temperature is 20 °C? %
- 2. What is a "perfect" HD when the temperature is 20 °C? %



Task 19. Personalise your user interface

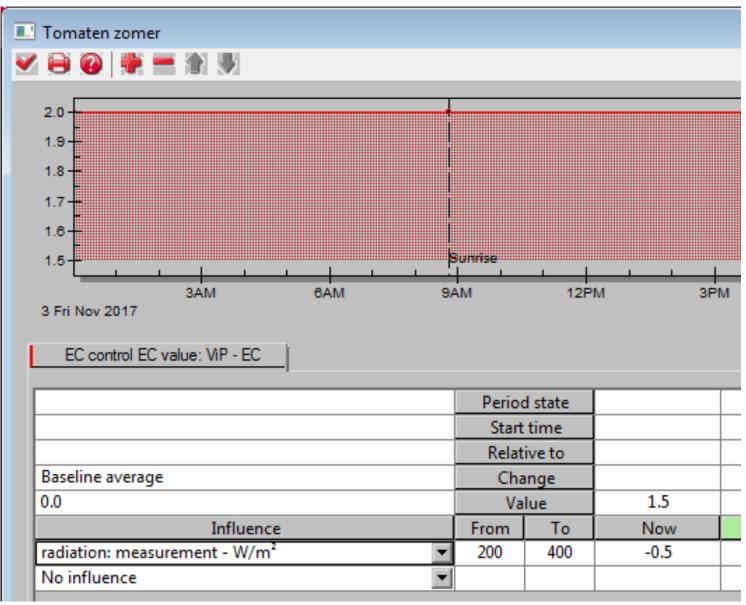
- 1. Create the folder "20 Irrigation" just like the example above
- 2. Drag and drop the definitions from the Hoogendoorn explorer to your own explorer
- 3. Create the worksheet "20 Irrigation" just like the example above
- 4. Drag and drop the definitions from your own explorer to the worksheet



Task 20. Personalise a setting list

- 1. Adapt the setting list like the example above
- 2. What is the minimum time between 2 drip cycles? minutes
- 3. What is the maximum time between 2 drip cycles? minutes
- 4. At what radiation sum will a drip cycle start? J/cm2

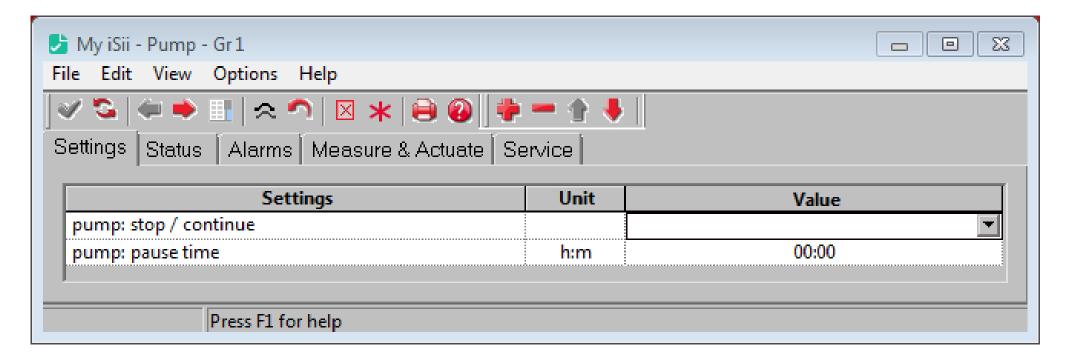
Task 21. Adapt the unique powerful graphical setpoints (ViPs)


1.	Select and	open the	setpoint	"radiation	sum	start'

- 2. Change the setpoint until you get the same picture as the example above
- 3. What is the goal of the influence "wind speed" in this setpoint?

.....

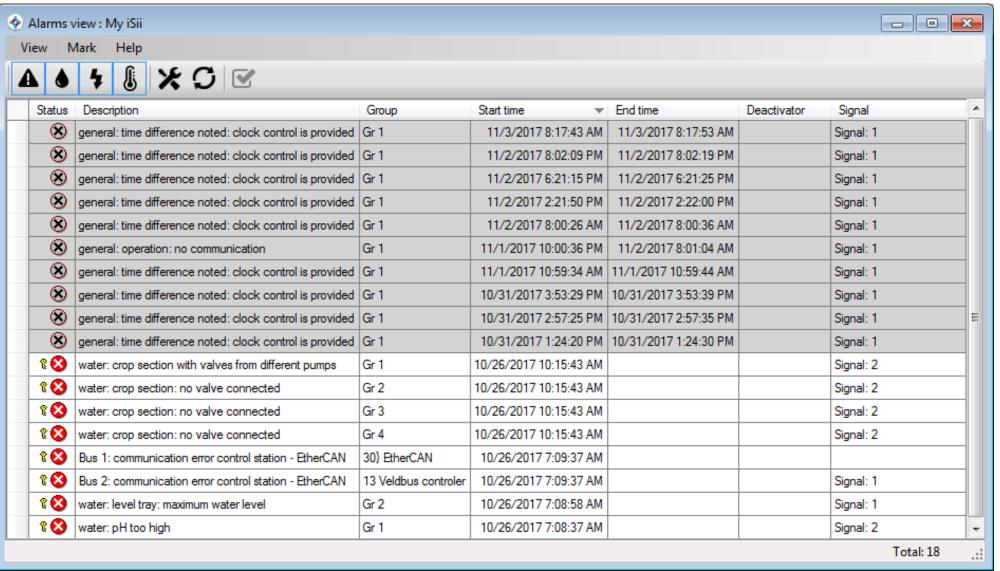
- 4. What is the "radiation sum start" when the measured wind speed is:
 - a. 4 m/s J/cm2
 - b. 5 m/s J/cm2
 - c. 6 m/s J/cm2
 - d. 7 m/s J/cm2
 - e. 8 m/s J/cm2
 - f. 9 m/s J/cm2
 - g. 10 m/s..... J/cm2
 - h. 11 m/s..... J/cm2


Task 22. Adapt the unique powerful graphical setpoints (ViPs)

- 1. Select and open the setpoint "EC control EC value"
- 2. Change the setpoint until you get the same picture as the example above
- 3. What is the goal of the influence "radiation" in this setpoint?

.....

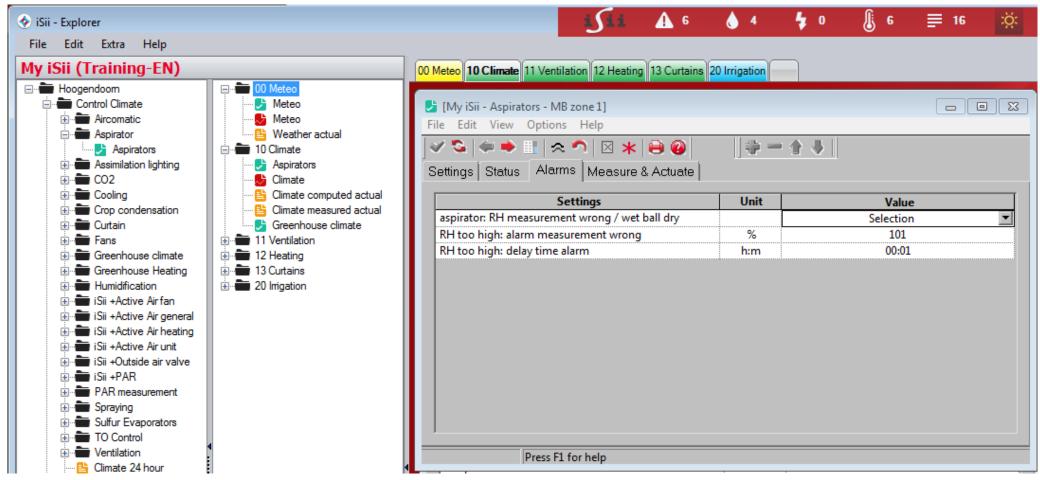
- 4. What is the "EC value" when the radiation measurement is:
 - a. 190 W/m2 EC
 - b. 200 W/m2 EC
 - c. 300 W/m2 EC
 - d. 400 W/m2 EC
 - e. 410 W/m2 EC


Task 23. Personalise a setting list

1.	Adapt the setting list like the example above
2.	The fertilizer tanks are nearly empty. How can you pause the current irrigation?
3.	The pump is stopped during a running irrigation because of an EC alarm. What are you going to do now?

Task 24. Alarms

1.	Open the Total alarm survey
2.	What is the difference between "grey lines" and "white lines'
3.	How many signals can be activated?
4.	What is a "deactivator"?

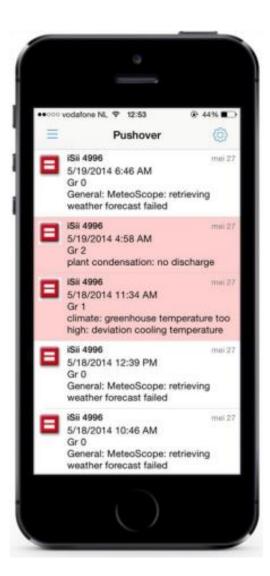


Task 25. Alarms

1.	Open the Total alarm survey
2.	Deselect the General alarms, the Irrigation alarms and the Energy alarms
3.	Mark the plant condensation alarms as viewed
4.	Why do we have an RH measurement alarm (use the help screens)?
5.	How can we solve this alarm?
6.	Why do we have the temperature alarms (use the help screens)?
7.	How can we solve these alarms?

Task 26. Alarms

- 1. Add the setting list "Aspirators" to the folder "10 Climate"
- 2. Drag and drop the setting list to the worksheet "10 Climate"
- 3. Click on the tab "Alarms"
- 4. Select Alarm signal 5
- 5. Change the delay time alarm to 01:00



Task 27. Alarms

1.	When there is an alarm you have to solve it. Give the right priority of your actions:
	Reset the OctAlarm
	Solve the alarm
	First take a coffee
	Switch off the buzzer with the alarm box
	Switch off the lamp
	Open the alarm survey
	Mark the alarm as viewed